
A Hybrid Traveling Salesman Problem - Squeaky Wheel Optimization
Planner for Earth Observational Scheduling

Garrett Lewellen and Christopher Davies and Amos Byon and
Russell Knight and Elly Shao and Daniel Tran and Michael Trowbridge

Jet Propulsion Laboratory, California Institute of Technology
{christopher.j.davies, amos.j.byon, russell.l.knight, elly.j.shao,

daniel.q.tran, michael.a.trowbridge}@jpl.nasa.gov

Abstract

We outline a hybrid planner for scheduling Observa-
tion Requests on an Earth observing satellite, subject
to a variety of constraints for the ASPEN (Chien et al.
2000) Eagle Eye adaptation (Knight, Donnellan, and
Green 2013) that combines Squeaky Wheel Optimiza-
tion (Joslin and Clements 1999) with sliding observa-
tion planning (Aldinger et al. 2013). The Earth Ob-
serving Satellite (EOS) planning problem (Globus et
al. 2004) is reformulated as time-varying travel time
TSP with interval constraints (Ichoua, Gendreau, and
Potvin 2003). The replanning/fill stage of the hybrid
scheduler marginally improves schedule quality for all
bus agilities examined, but has more impact on lower
agility observers. The squeaky wheel stage primarily
affects overall schedule quality by satisfying high pri-
ority requests, while the replanner reduces starvation
of lower value requests.

Introduction

Eagle Eye is an observational spacecraft planning and
scheduling system built atop ASPEN (Chien et al.
2000). A user specifies targets to be observed, and
Eagle Eye generates a schedule of instrument slews
and pointings to fulfill these requests. The optimal
observation schedule is a largest value tour within a
graph that has bidirectional edges with asymmetric
(figure 12), time-varying slew cost edge weights (fig-
ure 1), cycles (revisits) and interval constraints. Sim-
ilar problems have been classified as NP-hard and
NP-complete (Karger, Motwani, and Ramkumar 1997;
Lemâıtre et al. 2002; Ichoua, Gendreau, and Potvin
2003; Pinedo 2012).

Science teams will always desire an optimal sched-
ule, but combinatorial runtime is unacceptable for a
real scheduler. We present a compromise in this paper
– a hybrid approximation algorithm that uses squeaky
wheel optimization for initial scheduling and a looped
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Figure 1: Cumulative slew distance changes over time
and violates the triangle inequality after 3 minutes.

sliding window/fill replanning scheme to improve sched-
ule quality. We offer a weaker guarantee that each itera-
tion will be as good as or better than the prior iteration,
but do not guarantee optimality.

Related Work

The Space Mission Planning Problem (Hall and Mag-
azine 1994) seeks to schedule a sequence of jobs that
would maximize job satisfaction given time constraints
and job priorities. Hall and Magazine assert that the
Space Mission Planning Problem is NP-complete by
comparison to “Sequencing with release times and dead-
lines” (Garey and Johnson 1979).

Globus et al. present the Earth Observing Satel-
lite (EOS) Scheduling Problem (Globus et al. 2004)
of maximizing observation satisfaction during a fixed
period of time along with a fixed set of sensors, con-
straints, and priorities. The EOS Scheduling Problem
and the Space Mission Problem are similar but the EOS
Scheduling Problem takes more satellite-specific con-
straints into consideration. Globus et al. investigate
the EOS Scheduling Problem with a genetic approach.

Frank et al. (Frank et al. 2001) examine the EOS
Scheduling Problem using a Constraint Based Inter-
val representation of time, and reformulate the problem
into a Dynamic Constraint Satisfaction Problem in or-
der to leverage existing algorithms. Frank et al. argue



that this is large and complex enough that a greedy
stochastic search method with a resource contention
aware heuristic is the best approach.

Aldinger et al. formulate the problem as a numeri-
cal planning problem with slew constraints that makes
use of consecutive, short planning horizons stitched
together by spacecraft orientation at the boundaries.
Aldinger et al.’s short planning horizons are a special
case of the sliding window replanner described in this
paper, with window vertex overlap m = 0 and no initial
seed schedule.

Aldinger et al.’s windowed approach has good
tractability, but restricts optimization to local inter-
vals by scoping both the observation selection and tour
scheduling to the planning sub-horizons. This paper
seeks to improve Aldinger et al.’s approach by changing
the initial conditions of the windowed phase. Instead
of starting with an empty schedule, we start with a
sub-optimal seed schedule produced by Squeaky Wheel
Optimization, which operates globally and converges
quickly.

Ichoua et al. explore a related problem in time depen-
dent vehicle routing in which a fleet of vehicles must be
scheduled to service multiple customers (Ichoua, Gen-
dreau, and Potvin 2003). The vehicle’s travel time
varies depending on when it is dispatched. In their
approach, they use a parallel tabu search heuristic in
order to generate a reasonable solution that is more
representative of real-world conditions.

A key tractability assumption in Ichoua et al.’s prob-
lem is that the vehicles are undersubscribed, so wait-
ing until a trip becomes cheaper is a nonsensical action
that is excluded from the search space (Ichoua, Gen-
dreau, and Potvin 2003). In our problem, however,
the single observer is assumed to be oversubscribed
with no penalty for deferring a trip. Deferring the trip
can actually add value to the schedule, as the observer
makes cheap, lower value trips while waiting for the
high value trip to become cheaper. The no-wait as-
sumption in Ichoua et al.’s formulation is what makes
the time-dependent travel cost vehicle routing problem
NP-complete, but the no-wait assumption does not ap-
ply to our problem.

Joslin and Clements defined Squeaky Wheel Opti-
mization (SWO) for scheduling (Joslin and Clements
1999). They schedule tasks one at a time, in pri-
ority order, at the earliest opportunity. On subse-
quent iterations, problematic tasks are given higher
priorities, the schedule is flushed, and the tasks are
scheduled again using the new priorities. The itera-
tions are scored using original task priorities and the
best schedule is retained. There is precedent for using
Squeaky Wheel Optimization for space observational
planning (Knight and Chien 2006; Rabideau et al. 2010;
Analytical Graphics, Inc. 2015), though this hybrid ap-
proach adds an iterative improvement step.

Pralet and Verfaillie (Pralet and Verfaillie 2014)
describe Time-dependent Simple Temporal Networks
(TSTNs) for modeling systems where temporal con-

straints may vary depending on start time. In a TSTN,
the temporal distance between two time-points x and y
is bounded by functions of x and y. For Earth-observing
satellites, the time required for a satellite to slew to and
image a target varies with the satellite and target’s rel-
ative locations, and thus with start times.

Formulation
We restate the Earth Observational Scheduling prob-
lem (Globus et al. 2004) as a best effort tour of all
vertices with time varying edge costs, cycles within the
graph (revisits) and time interval restrictions (visibil-
ities). Given a graph G = (V,E) where each vertex
vi ∈ V is a desired visit to a science target and time
varying transit cost ei (t) ∈ E between science target
visits, choose the path P ⊆ G that maximizes fitness
score fsat = f (P ), where a P that visits all V within
the planning horizon [0, tend) may not exist.

By analogy to the job flow problem of minimizing tar-
diness with sequence dependent setup costs (Allahverdi
et al. 2008), optimal EOS scheduling is expected to be
at least NP-hard. We accept sub-optimality and restrict
the problem to the looser guarantee of not worse than
the prior iteration. The first stage is looped Squeaky
Wheel Optimization, with a bound on the maximum
number of iterations. The second stage is a looped re-
plan/fill iterative process (figure 2). The replanner is an

Figure 2: Hybrid Squeaky Wheel Optimization, looped
replanning approach

overlapping, sliding window scheme that consolidates
visits, creating gaps of idle time in the schedule, but
makes no attempt to improve satisfaction score fsat.
The fill phase increases fsat by scheduling unsatisfied
visits in the gaps, in priority order. The replan/fill loop
repeats until all visits are satisfied, replanning/filling
produces no meaningful improvement, or a maximum
number of iterations is reached. The replan step is lo-
cally scoped to a replan window, but the fill step is
globally scoped to the entire schedule.



Visits as Temporal Constraint Networks

The primary unit of work for our SWO scheduler is
the Observation Request. Observation Requests pro-
vided by an end user specify the targets to be observed,
along with observational and operational constraints.
These targets can be point locations, geographic areas
or trajectories in space (comet/asteroid flybys). Obser-
vation requests are fulfilled by Visits, which represent
the pointing of an instrument at a target which may be
revisited. These visits are then fulfilled by actual Ob-
servations that represent the instrument captures that
cover the target, as shown in Figure 3.

Figure 3: Hierarchy of Observation Requests

We call visits 0 and 2 detailed because their child
observations have been scheduled on the timeline and
all necessary resources (e.g. on-board memory, space-
craft orientation, instrument time) have been reserved.
Visit 1 is abstract because it has no child observations
to commit it to an exact start time. Visit 1 only has eli-
gible intervals defined by the upper and lower bounds of
the revisit constraint and its predecessor and successor
visits (visits 0 and 2).

The visits of each observation request constitute a
Temporal Constraint Network (TCN) (Dechter, Meiri,
and Pearl 1991). Each request has its own visit TCN.
We apply visit TCNs to this problem as an intermedi-
ate layer between an observation request and the obser-
vation activities that satisfy the request (red boxes in
figures 3, 4). The visits of a given request are a strict
temporal network: each visit must start strictly after its
predecessor ends, and end strictly before its successor
begins. The TCNs of different requests are indepen-
dent, allowing visits belonging to different requests to
be interleaved on the observation schedule (figure 4).

Squeaky Wheel Implementation

Our squeaky wheel implementation iterates over obser-
vation requests, scheduling an observation request as an
atomic operation. Scheduling an observation request
means instantiating the TCN of visits required by the
observation, then detailing as much of the TCN as pos-
sible given resource availability in the current schedule.
We detail each visit as early as possible within its re-
source availability and revisit constraint window (first

Figure 4: Temporal Constraint Networks are scoped
to individual requests. Visits belonging to different re-
quests may be interleaved on the schedule.

fit), hoping to pack the schedule early and leave large
gaps later in the timeline for other observation requests.
It schedules greedily based on priority (value).

We follow the same basic construct, analyze, priori-
tize cycle as canonical SWO (Joslin and Clements 1999)
but differ in implementation details. Where Joslin and
Clements maintain a priority queue between iterations,
we maintain two priority values for each request - the
true priority (immutable) and the working, adjusted
scheduler priority (mutable). In the analyze phase, we
do not apply blame based on cost - we apply blame
to a request if the scheduler cannot satisfy any part of
the request in that iteration. Any failure receives equal
blame.

Our priority queue variation is key to our implemen-
tation’s strict priority scoring and immunity to priority
inversion. We retain a mapping of observation request
to its current scheduler priority at the start of the iter-
ation. When sorted by scheduler priority, this mapping
is a recipe to recreate that iteration’s priority queue.
We journal this recipe and the overall fswo true-priority
score of the resulting schedule. We update the mapping
by adding a fixed ∆pscheduler to the scheduler priority
for each request that received blame in the prior itera-
tion. We do not reset the scheduler priorities between
iterations, giving them the same “sticky sort” quality
as Joslin and Clements’ original implementation (Joslin
and Clements 1999).

After all squeaky wheel iterations have been ex-
hausted or all requests have been satisfied, we sort the
recipes by their true-priority fswo. We choose the best
recipe and follow it to recreate the best schedule dis-
covered by squeaky wheel optimization. Our variation
has these traits, most of which are shared with Joslin
and Clements’ original version:

• A low priority request is attempted before a high pri-
ority request if the low priority request is problematic

• Immune to priority inversion in final output



Table 1: Summary of scoring functions

Trait fswo fsat ftime fslew
Rewards value Yes Yes
Priority inversion risk Yes
Rewards efficiency Yes Yes

• Not trapped at local maxima of schedule score be-
cause it does not search the schedule score objective
function (Joslin and Clements 1999)

• Not trapped at local minima of schedule cost because
it does not search schedule cost

• Can get trapped in a cycle around a specific scheduler
priority ordering (Joslin and Clements 1999)

• Biased toward partial satisfaction of requests because
only total failure increases scheduler priority

• Not guaranteed to find globally optimal cost or value

Scoring
Successful schedules should maximize satisfaction of ob-
servation requests while minimizing non-science time
and slews. Our SWO scheduler attempts to maximize
satisfaction, while the TSP replanner attempts to min-
imize time cost. The overall fitness of a schedule is
a composite of scores that reward different elements.
The scheduling phases have different needs, which we
address with different fitness scoring functions. Table 1
summarizes the scoring functions, which are described
in more detail below.

Value-based scores Squeaky wheel schedules are
scored with strict priority value function fswo, which
is invulnerable to priority inversion:

pmin = min (pi, (pi, ri) ∈ R : ri satisified) (1)

fswo = |(pi, ri) ∈ R : ri satisified ∧ pi = pmin| (2)

where R is the set of all Observation Requests at-
tempted and pi is the priority of request i. Our con-
vention is that smaller pi means more important/higher
priority. In this context, request ri is satisfied if any of
its visits have been detailed.

We compare fswo for two schedules by priority tiers.
The schedule with the better pi in its top tier of satis-
fied requests wins. If they have the same pi in their top
tier, the schedule with the largest cardinality of satis-
fied requests at that tier wins. If that is also a tie, we
repeat the comparison using the next lower tier on each
schedule until all tiers have been exhausted.

Satisfaction score rewards satisfaction of high-
priority observation requests. In this context, a request
is fully satisfied if its target has been imaged with a
sufficient number of revisits. If an area target is only
partially imaged, or if insufficient revisits are planned,
the request reports partial satisfaction as a fraction of
the full goal. If there are r Observation Requests,

fsat =

r∑
i=1

wi
|vj ∈ VTCN,i : vj is detailed|

|VTCN,i|
(3)

where the weight term wi is a function of request i’s
priority pi:

wi =

{
1
pi
, 1 ≤ pi

2− pi, pi < 1
(4)

Satisfaction score fsat is vulnerable to priority inver-
sion.

Cost-based scores Time cost score ftime penalizes
idle time between visits.

tcost =
∑

(tstart,i+1 − tend,i) (5)

ftime =

{
1

tcost
, 1 ≤ tcost

2− tcost, tcost < 1
(6)

Cost schedule score fslew penalizes large separation
angles φ between sequential orientation segments that
require costly slews.

Φ =
∑
|φi,i+1| (7)

fslew =

{
1
Φ , 1 ≤ Φ

2− Φ, Φ < 1
(8)

Slew distance fslew and idle time ftime scores rep-
resent the same concept - cost to complete the tour.
They are also both flawed. Idle time score ftime penal-
izes time gaps between visits, but doesn’t discriminate
between slew time (bad) and idle time (good). fslew has
a different problem - it rewards wasting schedule time
between successive visits to the same target because the
cheapest slew is no slew.

The two cost scores complement the other’s weak-
ness, so we use them together. If the window being re-
planned or the scratchpad timeline it is being replanned
on contain more than one visit for the same observation
request, we use ftime as the cost score. For all other
cases, we use fslew as the cost score.

Sliding Window TSP Replanner
We replan by abstracting (lifting) a region of the visit
schedule, re-ordering, and rescheduling visits in place
according to the new order. We call the function that
replans the abstracted visits the replanning kernel. Any
replanning function can be used but we only detail two
in this paper and have only implemented one (the un-
ordered insertion heuristic with time propagation). We
expect that replanning kernels will generally have high
computational complexity, so we employ them in an
overlapping sliding window scheme. This section de-
scribes one replanning kernel and how it is used in our
sliding window approach.

TSP Insertion Heuristic Replanning Kernel In-
sertion heuristics are a straightforward approach to pro-
ducing a satisfactory TSP solution. Starting with a set
of vertices and an empty tour, a vertex is removed from
the set and inserted into the tour at each possible posi-
tion; the optimal insertion point is chosen and the pro-
cess continues until the set is empty. The choice of ver-
tex and insertion point lead to a variety of approaches



outlined in (Reinelt 1994). The lengths of tours gener-
ated by insertion heuristics are typically no more than
twice that of the optimal tour (Rosenkrantz, Stearns,
and Lewis 1977). For our purposes, vertices represent
visits, and replanning can be thought of as abstracting
previously planned visits and reordering them subject
to the TCNs of their parent requests.

We use an unsorted insertion TSP heuristic to re-
plan a subset of the visit schedule produced by squeaky
wheel optimization. This meets the general insertion
method definition in (Rosenkrantz, Stearns, and Lewis
1977), but differs from the specific implementations in
how it selects the next vertex to add to the existing sub-
tour. Insert furthest, nearest, and cheapest all rank the
vertices that have not been added by some heuristic
function relative to the existing tour (cheapest, closest,
or furthest from the tour). Unsorted insertion search
chooses an arbitrary vertex to add to the existing tour.
We expect unsorted insertion search to produce worse
tours in a static cost TSP, but we think it is appro-
priate here because this problem is a time-varying cost
TSP. Past sorting decisions about vertex i − 1 may be
invalidated by an insertion decision made for vertex i.

Begin with a queue of vertices and an empty list of
visited vertices. Until the queue is empty, dequeue a
vertex and for each possible insertion point, construct
a new list with the vertex inserted at that position.
From the resulting set of lists, select the one with the
least weight as the starting list for the next iteration.

The following theorems prove the runtime complex-
ity of this approach. Theorem 0.1 proves the O

(
n2
)

complexity statement in (Rosenkrantz, Stearns, and
Lewis 1977) for an unsorted insertion heuristic, laying
the foundation for Theorem 0.2. Theorem 0.2 accounts
for time-varying slew costs in the TSP to give us the
complexity of executing our replanning kernel (unsorted
insertion heuristic) over one sliding window.

Theorem 0.1 (Complexity of unsorted insertion search
replanning kernel without time propagation). Given a
graph G(V,E) with n vertices, the unsorted insertion
heuristic has runtime complexity O

(
n2
)
.

Proof. Assume constant time to insert an unvisited ver-
tex into the list and constant time to evaluate the cost
of a list. Let T (i) be the number of positions evaluated
at the end of the i’th iteration. On the first iteration
there is one position to evaluate, thus T (1) = 1. On the
i’th iteration there will be i positions to evaluate, thus

T (i) =

i∑
j=0

1 + T (i− 1) (9)

which is the well known Arithmetic Series, whose solu-
tion is T (n) = n(n+ 1)/2 (Cormen et al. 2009). There-
fore O

(
n2
)
.

Example 0.1.1. Let G(V,E) = K4 with vertex labels:
V = {A,B,C,D} and edge weights:

d(i, j) = E =

∞ 1 2 3
1 ∞ 1 2
2 1 ∞ 1
3 2 1 ∞


Let π represent a sequence of vertices and c(π) =∑n−1
i=1 d(πi−1, πi). Let Πi be the set of candidate

branches after iteration i with Π0 = {A}. Select
π∗i = arg minπ∈Πi

c(π) as the optimal starting point
for iteration i + 1. Select B from V , then c(AB) = 1
c(BA) = 1 yielding π∗1 = AB. Draw C from V , then
c(CAB) = 3, c(ACB) = 3, c(ABC) = 2 yielding
π∗2 = ABC. Draw D from V , then c(DABC) = 5,
c(ADBC) = 6, c(ABDC) = 4, c(ABCD) = 3 yielding
π∗3 = ABCD. Now V = ∅, and report π∗ = π∗3 , which
for this worked example is the global optimal tour π∗g .

Theorem 0.2 (Complexity of unsorted insertion search
replanning kernel with time propagation). Given a
graph G(V,E) with n vertices, the insertion heuristic
has runtime complexity O

(
n3
)

if start times are com-
mitted for each vertex v ∈ V .

Proof. Derived from the time propagation consequence
in the time-dependent travel time TSP (Ichoua, Gen-
dreau, and Potvin 2003). Because start time of any ver-
tex vj ∈ Vi at iteration i has been committed, checking
insertion point j requires that start time of vj and all
following vertices be recomputed.

Replacing the constant time 1 insertion cost term in
equation 9 with i− j vertices after position j,

T (i) =

i∑
j=0

(i− j) + T (i− 1)

=

i∑
j=0

i−
i∑

j=0

j + T (i− 1)

=
1

2

(
i2 − i

)
+ T (i− 1)

=
1

2

(
i2 − i+ (i− 1)

2 − (i− 1) . . .
)

=
1

2

 i∑
j=0

(i− j)2 −
i∑

j=0

j


=

1

2

i3 − 2

i∑
j=0

ij +

i∑
j=0

j2

+
i (i+ 1)

2

∴ T (n) =O
(
n3
)

Theorem 0.2 is important for our sliding window re-
planner for two reasons. First, we require that each
sub-solution remain feasible, including the time allo-
cated for slews between requests. Slew time is a func-
tion of time, so we must at least temporarily commit
the visits to a start time. The other reason is that all



feasible solutions of a replan window will have the same
fsat, so fslew and ftime break ties1. These require slew
computations, and therefore time commitments.

Sliding Window The O
(
n3
)

complexity of the un-
sorted insertion search heuristic with time propagation
replanning kernel would be intractable for large sched-
ules. To make large schedules tractable, we restrict
the O

(
n3
)

portion to a small n using a sliding window
scheme.

Begin with a queue of unvisited vertices, and an
empty list of visited vertices. Until the queue is empty,
dequeue n unvisited vertices and pass them to the kernel
in the same order. The last m elements of the kernel’s
output are cleared from the kernel’s output and placed
at the beginning of queue in the same order, and the re-
maining n−m elements placed at the end of the visited
sequence.

Figure 5: Sliding Window

Theorem 0.3 (Complexity of replanning an entire
schedule with a sliding replan window). Given N ver-
tices, and replanning kernel complexity f , the sliding

window produces O
(⌈

N
n−m

⌉
f(n)

)
runtime complexity.

This theorem aggregates complexity of the unsorted
insertion search heuristic with time propagation sliding
window replanning kernel (theorem 0.2) over an entire
schedule. Figure 5 shows how the terms in this theorem
relate to the schedule being replanned.

Proof. Every iteration n dequeues, O (f(n)) opera-
tions, m deletions from the kernel’s output, m in-
sertions into the queue, and n − m insertions into
the list are performed. Thus, T (i) = 2n +

m + f(n). There are
⌈

N
n−m

⌉
iterations in total.

Thus, T(N) = (2n+m+ f(n))
⌈

N
n−m

⌉
. Therefore,

O
(⌈

N
n−m

⌉
f(n)

)
Corollary 0.3.1. Assuming that f ∈ O

(
nd
)

for d ∈
N, n = g(N) ∈ o (N) and m � n, yields complexity

1See Formulation:Scoring:Cost-based scores for more in-
formation on when fslew is used and when ftime is used.

O
(
Ng(N)d−1

)
). For example, if g(N) = lnN , then

O
(
N ln (N)

d−1
)

is obtained.

Example 0.3.1. Let G(V,E) = K8 with vertex labels:
V = {A,B,C,D,A′, B′, C ′, D′} and edge weights given
by:

d(i, j) = E =



∞ 1 2 3 10 1 2 3
1 ∞ 1 2 1 10 1 2
2 1 ∞ 1 2 1 10 1
3 2 1 ∞ 3 2 1 10
∞ 1 2 3 ∞ 1 2 3
1 ∞ 1 2 1 ∞ 1 2
2 1 ∞ 1 2 1 ∞ 1
3 2 1 ∞ 3 2 1 ∞


Let n = 8, m = 4, and the kernel κ : Π × E → Π

be the insertion heuristic. Let π0 = CADBC ′A′D′B′,
then π′0 = κ(π0, E) = DCBC ′B′AD′A′. The first
n − m vertices are placed on πw = DCBC ′, and re-
maining m on π1 = B′AD′A′. The next iteration
π′1 = κ(π1, E) = D′B′AA′, and repeating the alloca-
tion yields πw = DCBC ′D′B′AA′ and π2 = ∅ and we
terminate.

Methodology

Two experiments are performed with this hybrid ap-
proach. First, a toy problem demonstrates a subopti-
mal schedule generated by strict priority SWO alone,
and the impact of replanning on this suboptimal sched-
ule. The second experiment evaluates the performance
of the replanning phase against a random target deck
with randomized revisit constraints.

Toy Problem Experiment

Observation requests are created in a circle around a
point on the observer’s ground track. Request priori-
ties are specified such that SWO produces a suboptimal
path with many edge crossings. Revisit intervals are
hand-selected such that every request may be visited
before any request is due for revisit.

As this is a toy problem, the experiment will be eval-
uated qualitatively. The algorithm will be successful if
the number of edge crossings is reduced, with a desired
outcome of no crossings and a circular path between
the requests.

Squeaky wheel scheduling is expected to schedule all
visits of all observation requests in a fragmented sched-
ule with no large gaps (saturated activity schedule).
The sliding window TSP replanning algorithm is ex-
pected to re-order visits such that the path is approxi-
mately circular, with shorter slews, little fragmentation
and one large gap per visit cycle. Because the replan-
ning algorithm operates locally on partial schedules, we
expect a sub-optimal solution (not a circle). The re-
planned schedule will be judged qualitatively by the
number of edge crossings it removes from the path and



how much more condensed the schedule is after replan-
ning.

Figure 6: Targets aligned in a ring

Random Points/Visits Experiment

The purpose of this experiment is to evaluate the im-
pact of replanning dense, more realistic schedules. The
SWO schedule is treated as a baseline (iteration 0).
Both the quality improvement (improvement in sched-
ule score) and runtime cost-effectiveness (improvement
in schedule quality for runtime) of replanning are ex-
amined.

Observation requests are created for randomly gen-
erated points with random revisit intervals. The ex-
periment is repeated with three different agility pro-
files (high, medium and low agility). If sliding window
replanning is effective, we expect significant improve-
ments in schedule score each iteration.

Results

Toy Problem

As expected, the initial Squeaky Wheel Optimization
schedule produced a long tour with edge crossings (fig-
ure 7). After one pass of sliding window replanning,
most of the edge crossings are removed (figure 8). After
a second replanning pass (not shown), all edge crossings
were removed. Figure 8 highlights how drastically even
one pass of replanning improves tour efficiency.

Figure 9 shows that after the squeaky wheel optimiza-
tion but before replanning (OrientationTimeLine swo),
the schedule is fragmented. After one pass of replan-
ning (OrientationTimeLine hybrid), the visits are clus-
tered near the start of the timeline, leaving the latter
two-thirds of the timeline free for other science requests.
Figure 9’s large gap after replanning suggests that over-
all schedule fitness score fsat could be improved by a
looped, multi-pass replan/fill phase.

Random Points/Visits

Table 2 shows that sliding window replan/fill iterations
had the greatest impact for the lowest computational

Figure 7: Schedule produced by Squeaky Wheel Opti-
mization. Note edge crossings.

Figure 8: Schedule after sliding window TSP replan-
ning. Note reduction in edge crossings.

cost for the low agility observer’s schedule. This is likely
because replanning focuses on reducing slew costs, and
slews are more costly for a low agility observer than a
high agility observer.

Table 2: Total replanning score improvement

Agility Runtime ∆fsat Visits Added
High 9.1 min 0.0016 1.4 %
Med 6.3 min 0.0037 3.0 %
Low 5.4 min 0.0080 7.7 %

Figure 10 shows that all agility models receive some
satisfaction score increase due to looped replan/fill
loops. Satisfaction score fsat converges asymptotically
on an upper bound for all three agility profiles. Because
we schedule in priority order, early iterations schedule
the high-priority requests that contribute the most to
fsat, leaving only low priority requests for later fill it-
erations. Later iterations mostly minimize slew cost
and idle time, with little satisfaction score fsat im-



Figure 9: Comparison of timelines before replanning
(SWO) and after replanning (hybrid).
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Figure 10: Relative score (as fraction of starting score)
by looped replan/fill iteration. Note score convergence.

provement. After iteration four, replanning produces
no meaningful satisfaction score improvement (figure
11). Another interpretation is that the actions of the
replan/fill loop primarily address starvation of low pri-
ority requests without resorting to dueness or tardiness
terms in the value function.
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Figure 11: Score improvement return on computational
runtime cost.

Discussion
While implementing this hybrid algorithm, we discov-
ered several quirks and edge cases of this scheduling
problem. We discuss them below.

TSP Replanner is Sensitive to Input Order

A consequence of time varying slew costs is that early
decisions about vertex sequencing can become inval-
idated by subsequently added vertices. The cheaper
transition may be b → a when V = {a, b}, but adding

vertex c to V may cause a→ b to become cheaper. All
vertex c must do is perturb time and delay the slew
between a and b (figure 12).
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Figure 12: Slew distance between a and b can be both
asymmetric and time varying.

As a consequence, we bias towards local features
which may neglect the global characteristics we want
to deliver in planning. We do not backtrack and recon-
sider sequencing decisions made when the graph was
small, so we cannot even claim that the path within a
replanned window is optimal.

Replanning May Fail to Maintain fsat
The Temporal Constraint Network revisit constraints
are used as an additional visibility constraint. With
larger schedules, it is possible for replanning in an ear-
lier window to cause a subsequent visit in its TCN to
become due before it enters a replan window. If enough
other visits occurred between the dueness window start
and when the replan window slides contains the visit,
the revisit can come too late.

This violates our fundamental goal of not reducing
the score of a schedule during iterated replanning. We
compromise by accepting the violation of the revisit
constraint for this iteration and retain the SWO solu-
tion for this replan window, then advance the window.
The hope is that a future replan window may alter the
overall schedule in a way that the replan window covers
this visit when it is in its dueness window.

Complexity Control: Scratchpads

Our initial implementation of the replanner copied the
entire timeline (N vertices) for each graph variation in
each sliding window. This altered the complexity of the
window’s kernel f in theorem 0.3 from f(n) to Nf(n).
When substituted into theorem 0.3 and our insertion
heuristic kernel f ,

O
(⌈

N

n−m

⌉
f(n)

)
became

O
(⌈

N2

n−m

⌉
f(n)

)
≈ O

(
N2
)

We sought to avoid quadratic complexity in our re-
planner. Linear complexity was achieved with scratch-



Figure 13: Scratchpad as a sparse subset of the scheduled being replanned. Green visit 1 and blue visit 3 are
bookends.

pads: partial timelines copied to the sliding window
replanner.

Scratchpads avoid unnecessary duplication of the
working timeline when calling an inner tour planner. A
scratchpad contains visits to be placed in a particular
window of time, bookended by the visits immediately
before and after the visits to be scheduled. The book-
end visits serve to enforce a slew feasibility constraint
- events that are replanned must start as a slew from
the leading bookend and end with a feasible slew to the
tailing bookend. We perform all of our hypothetical
scheduling on scratchpads, then transfer the visits from
the best scratchpad back to the working timeline.

We must also represent the memory commitments
outside of the replan window - just before and after
the scratchpad bookend visits. We replace all memory
fills and drains outside of the replan window with two
equivalent bookend fill reservations. These bookends
are propagation limits that also detect when a memory
reservation inside the replan window would invalidate a
reservation after the replan window. The leading book-
end is a ramp (constant rate) from 0 to the recorder
fill level at the start of the replan window. The tailing
memory bookend is a ramp from the replanning window
end to the highest fill level after the replan window, but
before a communications access completely drains the
data recorder. Memory bookend reservations repropa-
gate in constant time.

Additionally, we inform the replanner of the revisit
constraints that apply to the visits within the replan-
ner. We do this by gathering the visit TCNs affected by
the replan window, then copying the first detailed visit
prior to the replan window and the first detailed visit
after the replan window to the scratchpad as detailed
Anchor Visits. The anchors constrain the replanner’s
search complexity to only the sub-TCNs within the re-
plan window.
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Figure 14: Memory scratchpad with simplifying book-
end rate reservations

Future Work

The initial ordering of visits could be generated by min-
imum spanning trees, convex hulls, sweeping lines, or
other methods, instead of SWO. As long as the initial
schedule satisfies all (or as many as possible) requests,
replanning should generate an acceptable schedule.

Greedy heuristics that minimize edge cost at each
step tend to produce poor asymmetric TSP solutions,
while greedy heuristics that minimize tolerances find
much better solutions. (Goldengorin and Jäger 2005)
Instead of the currently-used insertion heuristic, the re-
planner could use a tolerance-based greedy approach,
or other alternative TSP heuristics.

Another approach for the replanning phase could
maintain the sliding window to reduce the runtime com-
plexity, and incrementally improve the tour using exist-
ing approaches such as pair wise exchange (Croes 1958),



tabu search, and simulated annealing.
The time score ftime could be improved. As the goal

of the replanner is to improve efficiency and create gaps
that can accommodate unsatisfied requests/visits, ftime
should reward idleness instead of penalizing it. Idleness
could be computed by subtracting the minimum slew
duration between two consecutive orientation segments
(artifacts of visit detailing) from the duration of the gap
between the two orientation segments.

Conclusions

The sliding window TSP-based replanner improved the
quality of the schedule for all three observer agility
profiles examined in the experiment. Squeaky Wheel
Optimization was responsible for the vast majority of
the schedule value score improvement. Looped re-
planning/filling primarily reduced starvation of lower
priority requests that would otherwise not be sched-
uled by Squeaky Wheel Optimization. Looped replan-
ning/filling had a more significant impact on the sched-
ule of a low agility observer than it did for higher agility
observers. Future work should focus on improving the
quality of the replan phase and testing replan scores
that reward schedule defragmentation (idleness).
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